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I. INTRODUCTION 

A.	 SOME INTERESTING NARRATIVES 
Landau' has pointed out that scientific theories are essentially narratives and that we have certain basic 

stories, or deep structures, we tell to organize our experiences. Moreover, she showed how narrative 
analysis was useful to explain competing theories of the evolution of Man. Feeding, on one hand, and not 
being killed in predatory encounters, on the other hand, are two important forces in the survival of 
individuals and evolution of communities. Our subjects of study, the plankton, are heroes in a narrative 
of life and death, and we scientists are the storytellers.2Rather than avoiding narratives, Landau I suggests 
scientists use them, as they are in literature, as a means of discovery and experimentation. Moreover, she 
notes that recognition of scientific paradigms as narratives or myths is useful because it keeps us from 
taking them so seriously, thus promoting discovery. 

I have begun this chapter on feeding mechanisms of suspension-feeding zooplankton with a reference 
to narrative because feeding mechanisms have played a central role and will continue to playa central 
role in the ecological stories we tell about aquatic communities. No study of mechanisms is ever free of 
an ecological context, and the soundness of our ecological stories can be evaluated only by their 
consistency with observed mechanisms. Some examples of popular narratives for which understanding 
of feeding mechanisms is essential for evaluation are: 

I.	 Suspension-feeding zooplankton are optimal foragers who will track peaks in particle-size spectra. i.e.. 
focus their feeding efforts on the most abundant particles.'.4 

2.	 The dynamics of pelagic ecosystems can largely be described from knowledge of the size of their 
components (algae, zooplankton, and fishes) and food-size preferences. ~.6 

3.	 The microbial food web is a "sink" and not "link" to components of the classic food web (large 
phytoplankton, large zooplankton, and fishes) because suspension-feeding metazoans cannot efficiently 
graze picoplankton «2 !lm).7.8 

Other kinds of narratives about food webs we are likely to tell can be motivated by examination of 
data from the Laurentian Great Lakes and recent observations and theory connecting micropatchiness and 
turbulence to the feeding and recruitment success of zooplanktonY-13 Figure 1 shows that the different 
Great Lakes exhibit different seasonal patterns of phytoplankton concentration (expressed as chlorophyll 
a) ranging from ultraoligotrophic Lake Superior, which exhibits a stable and low phytoplankton concen­
tration, to eutrophic lakes Ontario and Erie, which exhibit high and wildly fluctuating phytoplankton 
concentrations.'4-18 In large part, these concentrations reflect the different nutrient supplies to the lakes. 
In addition, these lakes - all interconnected - have very different food webs. As we move along the 
gradient of increasing eutrophy, we see that the crustaceans, first dominated by calanoid copepods, 
become dominated by cladocerans and cyclopoid copepods (Figure 2).19-22 As we shall see later, feeding 
mechanisms probably account for this difference. Note especially the very different food webs in Lake 
Michigan and Ontario, both of which have the same mean depth (Figure 2) and temperature regimes. 

It is probable that zooplankton are adapted to exploit food patches in a temporally and spatially 
variable environment. 23 There is great interest now in the dual role of wind-generated water turbulence 
in increasing feeding by increasing encounter rates between zooplankton and particles and decreasing 

Figure 1. Seasonal chlorophyll a concentrations 
in the Great Lakes compiled from survey studies of 
the early 1970'S.14'18 All data are for the epilimnion 
except the Michigan data. which are integrated 
over 100 m. 



207 

I~ ~~LiI'--" L-_-._t 
100...----------------~ --0~ 80 

c: 
0 
:; 60 Figure 2. Biomass composition of"en 
0 crustacean zooplankton from early40C. 

spring through late fall from seasonal E 
0 20 survey data.19•21 Dry weights of Hawkins 
U 

and Evans22 were used to convert num­
o ber concentrations to biomass. Upper Superior Huron Michigan Ontario Erie 

panel shows mean depths (2) of the 
----Eutrophy • lakes. 

feeding by destroying patches of particles. I1-13.24 Feeding mechanisms may determine whether turbulence 
in large water bodies like the Great Lakes is beneficial or detrimental. 25 

B. MATHEMATICAL FRAMEWORKS AND SPECIFIC QUESTIONS 
1. Components of Nutrition 

All the narratives described above are just submodels of larger food-web models that incorporate 
zooplankton-particle interaction. It can be argued that the goal of research on feeding mechanisms is the 
development of mathematical models that predict the feeding rate of zooplankton on all the particles in 
nature and their subsequent utilization by the zooplankter. These particles would include not only (I) 
algae of various morphologies, toxicities, and digestabilities, (2) microzooplankton, and (3) detritus, but 
also (4) inert mineral suspensoids such as clay and autogenically precipitated calcite. 26•27 The presence 
of large inert particles can lower ingestion rates, and ingested inert particles can lower the assimilation 

28efficiency of carbon in ingested food. 26- Resuspended bottom sediments may be a source of toxic 
27chemicals to zooplankton if these sediments are polluted. 26•

Recently, Vanderploeg et aU3 formalized the process of feeding and utilization of ingested food as 
"components of nutrition" in a fashion analogous to Holling's "components-of-predation" approach 
(Figure 3).29 In Figure 3, the components of nutrition can be broken down into two sets, Holling's 
"components of predation" and "components of utilization", the sequence subsequent to ingestion that 
leads to growth and reproduction. Some key variables that control each component of nutrition are shown 
next to the components. Note also connections of certain components with biogeochemical cycling, the 
loss of C. N, P, and other material to the water. A rather detailed mathematical model could be developed 
by considering the effects of all controlling variables on each component. My purpose here is, rather, to 
use it as a framework to organize our thinking about the feeding process. My emphasis is focused on 
particle choice as it relates to particle quality and important controlling variables, i.e., I am primarily 
concerned with components of predation. 

Holling29 broke the feeding process into a sequence of chronological steps involving different 
mechanisms. The probability (P,) that ingestion of the ith kind of prey ultimately occurs is: 

(1) 

where PE, PA' Pc' and PI are the conditional probabilities of encounter, attack, capture, and ingestion, 
respectively. For example, we may think of a pelagic suspension feeder like a copepod that has a 
volumetric search (foraging) rate, i.e., a searching clearance rate, of '1'. The feeding rate, G; (units: 
biomass per time), on the ith prey is 

(2) 

where Xi is the concentration of prey (units: biomass per volume). Combining Equations 2 and 1 
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Figure 3. Components of nu­
trition and key variables that af­
fect them. The components of 
nutrition apply to the feeding of a 
particular life stage of a particu­

Controlling 
variables Components of nutrition 

lar zooplankter. Most zooplank­
ton appear as both predator and 

FQ,M, WM 

prey on this diagram. Control 
variable abbreviations are: Fa, FQ,M 

food quality; M, motivation; WM, 
water motion (turbulence); NO, 

FQ,M 

nutritional quality; I, ingestion rate FQ,M 
(including history); EC, environ­
mental cues. Shaded boxes re­ NQ,I 

fer to "components of preda­
tion".. 29 The unshaded boxes are NQ,I,WM 

"components of utilization". (Re­
drawn from Vanderploeg, H. A., NQ,I,EC 

Checkley, D. M., Jr., Deibel, D., 
et aI., in Zooplankton Population 
Biology, Tessier, A. and Goulden, 
C. E., Eds., Princeton University 
Press, Princeton, NJ, in press.) 

(3) 

2. The Effective Food Concentration Model 
A simple mathematical model, the effective food concentration (EFC) model, encapsulates many of 

the main features of the components-of-nutrition framework to predict ingestion of the di fferent particles 
in nature as well as quantitatively express the narratives.3o.31 Both components of nutrition and EFC 
frameworks will guide the discussion. The EFC model predicts the ingestion rates of different kinds of 
food in a mixture from knowledge of food-type (particle) concentrations (X) and their selectivity 
coefficients (W;'). EFC is the weighted sum of the n food types, where the weighting factors are the 
selecti vity coefficients: 

n 

EFC == ~ (4),L..J W'X 
I I 

The selectivity coefficient is most easily detennined from clearance rates (FJ of the different kinds of 
foods in mixtures from the relationship W( == F/Fpn:r, where Fpn:r == clearance rate (units == ml per animal 
per day) on the preferred food. This coefficient ranges between 0 and I and is equivalent to the relative 
mortality rate coefficient (m) induced by the predator since mj is proportional to F j.30 For a filter feeder, 
W( corresponds to filtration efficiency, assuming all particles collected are ingested. The EFC model 
states that the ingestion rate (0) of all foods in any mixture of foods is given by the simple functional 
relationship 0 == f(EFC), where f(EFC) may be any of the relationships used to predict the ingestion of 
a single kind of food, such as the Michaelis-Menton, linear, or Ivlev.32 For example, substitution of EFC 
for food concentration in the Michaelis-Menton expression gives the following expression:30 

o == 0 max' (EFC) (5)
K+EFC 

where Omax is the maximum ingestion rate and K is the haff-saturation coefficient. The ingestion rate (OJ) 

on the ith kind of food is: 
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G ·W'·XG. = rna< i i (6) 
I K+EFC 

and K may be functions of environmental variables such as temperature as well as a physiological Gmax 

condition of the animal that, e.g., might change with feeding history and reproductive status. The basic 
principle of the EFC model is that Equation 4 converts the quantity of each kind of food to an equivalent 
amount of the most preferred food by means of the selectivity coefficient W(. Thus, G = f(EFC) is the 
same response for the most preferred food alone. Vanderploeg and Scavia30 and Vanderploeg et al. 31 

assumed that W' had to be invariant (not change) with food concentration for the EFC model to be valid. 
Ambler33 showed that this assumption could be relaxed. An obvious but important corollary of the EFC 
model is that EFC < total particle concentration (L~= I XJ If the W' values of the different particle types 
are low, a suspension feeder can find itself in a high-concentration particle suspension and starve. 

Clearance rates are extremely useful for understanding the interaction of the suspension feeder with 
its environment. We have already noted that clearance rates normalized to Fprcr are selectivity coefficients. 
The· clearance rate, or volume of water swept clear of particles per unit time, is the rate at which 
suspension feeders forage, or "search" the environment, since F has the same units as a search rate. The 
feeding rate (G) is the product Fprc(EFC). Figure 4 shows the relationship of G to EFC and Fprcr to EFC 
for the three commonly used models. Experimental work has shown that not all feeding relationships will 
fit one or any of these models, although the latter often do apply.34.J5 An important feature of all these 
models is that at low EFC, clearance rates are maximal (Figure 4). At low EFC, W' are often approxi­
mated from clearances rates determined for individual prey types offered singly using the same relation­
ship W( =F/Fprer, but here the F; =clearance rate of i is offered alone.2' In this case, we are assuming 
that, like the linear model (Figure 4), the clearance rate does not change with EFC at low EFC. This also 
presumes that the zooplankter is in the same physiological condition in the separate experiments. 

Clearance rates at low EFC represent the maximal foraging rate of the organism for a given particle 
type at that temperature. Therefore, it is of interest to compare weight-specific, i.e., weight-normalized, 
clearance rates of different suspension feeders on different particles at low concentrations to determine 
each one's foraging ability, because relatively low food concentrations may often be the normal situation 
in aquatic environments. It is also of importance to know the weight-specific G ' since a high G •max ma

identifies organisms adapted to high food environments or identities opportunistic organisms adapted to 
take advantage of intermittent high food concentrations. In general, entire G vs. EFC and Fprcr vs. EFC 
responses are of interest. 

3. The Components of Selectivity Approach 
W', W, and E* are generally considered to be the preferred variables for quantifying food selection, 

and are widely used.no,36.38 I generally prefer using W' over Wand E*, because Wand E* values depend 

1.0 +-........_...I...----'-_..i.~- •••••••••••••••••• 

0tti \'l\~:'f ... "" ...•.., __ ­
~ 0.8 .~ .. - ~-- t 
I v ..····;.... -:-"~\iS-Men on

.:;,:,:.--- MIC"7' 0.6 
OJ 
:::t. 0.4-

C' 0.2 

Figure 4. Theoretical ingestion 
rate (G) and clearance rate (F) 
curves as a function of effective 
food concentration (EFC) for linear 

O~...,...-r--r-.---r---,-...---r-,--,--r--r-+ 
Michaelis-Menton, and lvlev rela­

2.0-r---'----''---'----L--'----'----''--........---'--'''----.........---J.-+
 tions. Curves were drawn so that 
~ ,
I 1.5 
'0 .....~. 

1.0+--...;.;.110",,~-- __ 
E 
~ 0.5 ----.... 

the maximum ingestion rate (Gma.) 

= 1.0 ~g d-1 for all relationships, 
and all relationships have a half­
maximum G at EFC =0.5 ~g ml-1• 

The incipient limiting concentration, 
O+-...,...-r--r-r---r---,-...----.-,--,--r--r-+ the lowest EFC at which G • is 

a 0.4 2.0 2.4 
ma

reached for the linear model, is 
1.0 ~g ml-1 • 
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on the number of prey species included, and because of the direct connection of selectivity expressed as 
W' to the EFC modeI.4.30,31.38 To emphasize this point, I call W' the selectivity coefficient and Wand E* 
electivity indices, 

Another advantage of using W' to express selectivity is that it is possible to break it down into 
components of selectivity in a fashion analogous to the components-of-predation approach of Holling,29 
Equation 2 may be rewritten as G; = '" W;'X;, where W( may be thought of as the conditional probability 
that the species will be ingested if it occurs in the search volume,30.31,36.39 I say "thought of' because the 
prey with the highest clearance rates may not necessarily be captured if it is encountered, and because 
'l' can be an immeasurable quantity if we cannot specify the boundaries of the area it sweeps out. Because 
W' is either this conditional probability or, in the general case, a normalized (scaled to the highest) 
conditional probability, we can formally break W;' into components of predation as follows using 
Equation 1: 

(7) 

where Pi· is the Pi for the most preferred prey, i.e., the maximum Pi for all prey types. We take advantage 
of Equation 7 and speak of components of selectivity by replacing the chain of conditional probabilities 
with conditional selectivity coefficients: 

(8) 

where W j * is the maximum product of the conditional selectivities in the brackets of Equation 8. Thus, 
we can break selection into selectivity at each stage of the feeding process. This formalism may not be 
used for many practical problems; however, it does emphasize the multistep process that ultimately 
determines selectivity. The studies of Gallager4° on filter feeding of bivalve mollusc larvae, Williamson41 

on Diaptomus preying on rotifers, and Paffenhofer and Van Sant"2 on Eucalanus and Vanderploeg et al.43 

on Diaptomus feeding on particles of various food qualities are noteworthy examples of the importance 
of looking at the whole multistep process. The story does not quite end with ingestion since the ingested 
food must be digested and utilized. Therefore, it is necessary to consider the suspension feeder's ability 
to digest and utilize various toxic and digestion-resistant foods, e.g., toxic blue-green algae and di­
noflagellates and digestion-resistant gelatinous green algae.23 In addition, the particles not digested 
become egested feces (Figure 3). Thus, suspension-feeding zooplankton ingest particles of various sizes 
and qualities and output particles of different sizes in the form of lower-quality fecal pellets or diffuse 
feces, depending on the taxon. The nature of the egested material and residue left from sloppy feeding 
(Figure 3) has profound implications for biogeochemical cycling23 (also see Chapter 10). 

c. GOALS AND ORGANIZATION 
Recently, Price44 organized her review of the feeding mechanisms of all major taxa of zooplankton by 

describing the mechanisms associated with each of the steps, i.e., conditional probabilities in Equation 
1. Her purpose was to do a survey of the mechanisms. My purpose is to describe selectivities and 
explicitly connect them to the mechanisms responsible. I am concerned about drawing generalizations 
about feeding types or guilds. Furthermore, the guild or feeding-type orientation is necessary because we 
cannot, in most cases, describe the actual mechanisms of feeding, but only how the animal functions in 
an operational sense. Emphasis is given to the size and quality of the selected particle, since both variables 
are important. Data is often presented in the format of W vs. equivalent spherical diameter (ESD) of the 
ingested particle, because ESD is a convenient way of expressing size in understandable, easily visualized 
units. Also, as has been done historically, ESD is on a logarithmic scale, since particle concentration in 
volume or mass units is roughly constant across this logarithmic scale.45.46 For example, the upper portion 
of Figure 5 shows the particle-size spectra, i.e., volume of particulate material vs. ESD, in bottles of 
natural lake seston without and with grazing zooplankton after I d of feeding,41 The lower portion shows 
the W' vs. ESD curve for Diaptomus ashlandi determined from these data as well as W' vs. ESD curves 
for D. sicilis and D. oregonensis in similar related experiments. The W' vs. ESD curve is the selectivity­
size spectrum. Our interest in particle-size spectra and grazing experiments like these can be related to 
the development of a Coulter counter for the rapid sizing of particles expressed as ESD and the application 
of this tool to marine science in the late 1960s and early 1970s.45.46.48 It is important to recognize at the 
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outset that algae come in various shapes other than spheres (Figure 6); therefore, ESD may more or less 
resemble the linear dimensions of the algae. 

Very often, selectivity coefficients are not available for large sets of prey types. In fact, selectivity 
coefficients were typically available for only pairs of prey types. To estimate W values of large sets from 
smaller sets, I used the principle of maintaining proportionality between coefficients defined in smaller 
sets to build the larger set. An example will help (Table I). Prey 3 is preferred to prey 2 in experiment 
2, and prey 2 is preferred to prey I in experiment 1, as indicated by the F and W values for the separate 
experiments. Clearly, prey 3 is the preferred prey; thus, we assign it an overall value of 1.0. The 
proportional relationship between prey 3 and prey 2 in experiment 2 is maintained by assigning prey 2 
a value of 0.5. The proportional relationships between coefficients in experiment I is maintained by 
calculating an overall value of 0.25 for prey I. This approach is most suitable for low concentrations of 
prey because W' does not vary with the relative proportions of prey or concentrations at low prey 
concentrations (as discussed below). 

This chapter is mostly limited to those taxa that are suspension feeders throughout their lives and are 
dominant grazers in the oceans or freshwater lakes: calanoid copepods, cladocerans, rotifers, pelagic 
tunicates, and ciliates (Protozoa). I am using the expression "suspension feeder" in its broadest context 

350 
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- 250
E 
2: 200 
.s::... 
Cl 150c:: 
Q) 
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By.r.

I ~ 
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Figure 6. Dimensions of interest: 
lengths and equivalent spherical diam­
eters of algae used in the study of 
Vanderploeg et al.2 to evaluate effect of 
algal morphology in selectivity. Green 
algae used were Chlamydomonas sp. l~f' 
(C.sp.) and C. oblonga (C.o.); diatoms,
 -- ··Sy.SP. shown in valve view, were Asterionella
 

_ _ O.st. n. formosa (A.f.), Synedra sp. (Sy.sp.),
 
, I I ----r- I , --, S. radians (Sy.r.), S. delieatissima 

3 4 6 8 10 15 20 30 v. angustissima (Sy.d.a.), and Stephan­
Equivalent Spherical Diameter (f.L m) discus niagare (St.n.). 
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to include all zooplankton that feed on Table 1. Calculation of W' values for set of three prey 
small particles. Paffenhofer et a1.49 from two sets of two prey each haVing indicated 
were the first that I am aware 'Of to clearance rates (F) and w' values 
apply this expanded definition when W'
they described as suspension feeders F

Prey in each Combined
copepods that use remote detection to Experiment type (m] d- I ) experiment W'
locate particles. Previously, the defi­
nition was synonymous with filter 1 5 0.5 0.25 
feeding, and copepods, themselves, 2 10 1.0 
were thought to be filter feeders. The 2 2 15 0.5 0.50 
suspended particles we are concerned 3 30 1.0 1.00 
about are in the submicrometer to ap­
proximately 200-~m size range, the 
size range typically measured by the Coulter counter. By this expanded definition, some suspension 
feeders themselves are not much bigger than the particles they feed on, and they too would be in the size 
range counted by the Coulter counter. All suspension feeders discussed in this chapter, because of their 
small size and the relatively low current velocities they create, live in a viscous environment in which 
flow is laminar. 

The review is not intended to be an exhaustive treatise on mechanisms, but an essay on the relationship 
of feeding mechanisms to feeding ecology, with emphasis on recent ideas, especially those concerned 
with food quality and how selectivity for different particles may change as their abundance changes. 
Another issue is whether zooplankton have sensory ~ystems that can detect particles before touching 
them. Finally, there is the issue of how physical variables like viscosity and turbulence affect selectivity 
and feeding performance. I start the review with copepods because they exhibit a broad range of behaviors 
and mechanisms that encompass most of those of the other groups. Because of this, and the long history 
of study of this taxon, generalizations made here will be useful models for understanding other groups. 
In addition, the review is largely restricted to feeding behavior in a homogeneous environment because 
we do not have enough information - due to experimental difficulties - on how these suspension 
feeders might locate and take advantage of patches. 

II. CALANOID COPEPODS:
 
BEHAVIORALLY FLEXIBLE OMNIVORES
 

A. HISTORY 
Much of the impetus for studying feeding mechanisms in planktonic suspension feeders can be traced 

to the first application of high-speed microcinematography by Strickler and colleagues in the late 1970s 
and early 1980s to directly observe feeding mechanisms of marine calanoid copepods.49' 51 Before these 
observations, herbivorous calanoid copepods were thought to be filter feeders, and selection for particles 
was largely thought to be a function of the size distributions of holes in the copepod's filter, the second 
maxillae.52.57 Moreover, the most developed form of this model, called the leaky-sieve model, argued that 
the cumulative frequency distribution of holes (intersetule and intersetal spaces) in the second maxillae 
defined the W' curve of the copepod.10.54.56-~8 The observations of Strickler and colleagues showed that 
calanoid copepods created a scanning current of water that focused water near the animal's body and that 
the copepod responded by coordinated movements of the mouthparts to bring in a large alga it detected 
closer to the body and ultimately ingest it. 50.~I59.(,O At the time, olfaction was hypothesized to be the 
stimulus for capture. Also, it was discovered that copepods preferentially ingest algae over plastic 
microspheres, and algal-tlavored microcapsules over unflavored microcapsules.61.62 These observations 
were made during a period of intense debate as to whether copepods tracked peaks in the particle-size 
spectrum.3A·61.63.66 For example, in Figure 5 this question was rephrased as: Does the peak in the W' vs. 
ESD curve match the peak in the particle-size spectrum (the C curve), and does the W' vs. ESD curve 
change from one experiment to another as the shape of the particle-size spectrum changes?4 If the W' 
curve, or selectivity spectrum, does not change from experiment to experiment, this is concentration­
invariant, or "invariant" selection; if it does, this is concentration-variable, or "variable", selection.4.30,36 
It was recognized that the leaky-sieve model (or passive, mechanical selection) was one way of obtaining 
invariant selection and, implicitly, invariant selection became equated with passive mechanical selection; 
therefore, the idea of invariance fell into disfavor.4.3I1,3U6 The peak-tracking question is basically an 
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optimal foraging question of whether the animal will focus its efforts on the most abundant food and 
thereby elevate its food intake. This question was important then, and it still motivates research. A lot of 
confusion in answering this invariance question arose out of three serious problems:4J' (I) improper 
methods of quantifying selection, (2) zooplankton feces production confusing what was actually ingested 
(i.e., particles removed), since the Coulter counter cannot distinguish between egested feces and uneaten 
particles, and (3) the Coulter counter does not determine the quality of the particles. The first problem 
was solved by the invention of W'(and Wand E*), and the second and third by using methods such as 
microscopic counting or radiotracer methods that clearly allowed measurement of ingestion and the 
nature of the particles ingested. The idea of the particle-size spectrum is nevertheless useful, because size 
is an important variable. We can start examining this problem by looking at mechanisms responsible for 
the selection of high-quality food of different sizes. 

B. SELECTIVITY, FEEDING RATES, AND MECHANISMS 
1. Selection of High Quality Food 

A great many copepods, especially those with strong herbivorous tendencies, move very slowly and 
create a strong double shear current (focused tlow in both lateral and vertical directions from the body 
axis) in which they detect and capture particles. Figure 7 shows a slice through the tlow field around a 
free-swimming Eucalamus crassus, a marine calanoid copepod that creates such a scanning current. 
Figure 8 shows different theoretical cores or regions of particle capture for E. crasslls. 2~ Any particle 
within the motion or viscous cores automatically travels to the mouthparts in the capture area. The motion 
core is just the forward projection of the capture area, and the viscous core represents the region of the 

Figure 8. Diagram explaining the terms mo­
tion core (M), viscous core (V), and sensory 
core (S).25 CA, capture area; FS, sensory fields 
on first antennae. 
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Figure 9. Lateral views of the anterior por­
tion of the bodies of copepods studied by 
high-speed microcinematography. Figures 
were redrawn from Koehl and Strickler, 51 

Vanderploeg and Paffenhofer,67 and 
Paffenhofer and Stearns.35 The appendages 
labeled are: first antenna (A1), second an­
tenna (A2), mandibular palp (MP), first max­
illa (M1), second maxilla (M2), maxilliped 
(MXP), and swimming feet (S). 

double-shear current field outside of the motion core that leads to the capture area. The sensory core 
represents that region outside o~' the viscous core in which particles can be detected, presumably by the 
sensory fields on the first antennae. To capture particles in the sensory core, the zooplankton must actively 
move toward the detected particle. The resulting capture is described as an active capture. Most of the 
discussion focuses on Diaptomus, because it is one of the four copepods intensively studied by high-speed 
microcinematography (Figure 9) and because selectivity and feeding rate have been explicitly related to 
feeding mechanisms in this species.2.31.35.51.67.68 The W' vs. ESD for Diaptomus is shown for easily 
ingested, high-quality algae and an easily ingested, soft-bodied, slowly-moving rotifer in Figure 10. 
Selectivity increases with the increasing size of the alga or rotifer. For comparison, the W' curve predicted 
from the leaky-sieve model is shown.s8 Clearly, the leaky-sieve model is a poor predictor of the 
empirically determined W' curve shown in Figure 10. Above the monotonically increasing W' vs. ESD 
curve are shown the capture modes used to capture the particles. Very small particles are captured 
passively without detection by the copepod. The passively captured small particles carried in the motion 
or viscous cores flow in undetected between the paired second maxillae or between the spaces between 
setae (the projections on M2 in Figure 9) and are funneled toward the mouth.67,69 Theoretically speaking, 
this is interesting because calculated boundary layer thicknesses around the setae should prevent particles 
from flowing between the setae under these conditions of laminar flow.69 

As particles get larger, an increasing proportion of them are captured actively, i.e., they are detected 
in the laminar double-shear scanning current, and coordinated motions of the mouthparts are used to bring 
the particles between the second maxillae. The fling and clap motion described by Koehl and StricklerS l 

is used to squeeze out the water to get the particles between the second maxillae. As algal size gets larger 
and larger, a greater proportion is captured actively, and the larger particles are detected at a greater 
distance.67,70 For example, in the case of D. sieilis, the fling and clap motion of the second maxillae (M2 

Diaptomus sicifis A1 

~ 

Figure 10. The W' vs. equiva­ Capture Mode 
lent spherical diameter (ESD) • Active-----I 
curve for .Diaptomus feeding on 

Thrusthigh-quality food (solid line). This I----Passive---... •curve is a composite of results from 
experiments of Vanderploeg et al.2 

for D. sici/is feeding on the algae 
Chlamydomonas sp., C. oblonga, 
Stephanodiscus niagare, and 
Synedra sp., as well as results from 
Williamson and Vanderploeg68 for 
D. pal/idus feeding on the rotifer 
Synchaeta oblonga. For compari­
son, the prediction of the leaky­
sieve model is shown. Capture 
modes for the particles are shown 
above the curves. 
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in Figure 9) is used to capture algae nearby and the maxillipeds (MXP in Figure 9) help capture particles 
at greater distances from the body. The proportion of maxilliped-aided capture increases with algal size. 
Thus, there is a perceptual bias for large algae. These observations require a minor modification of the 
sensory core hypothesis. As particles get larger, the perception core increases, and it may be more 
appropriate to think in probabilistic terms: larger particles in a given region have a larger probability of 
detection than smaller particles. 

Synchaeta. the most preferred of all Diaptomus' prey, was captured actively like the algae or with a 
thrust response that has only been observed for the capture of microzooplankton. The thrust response 
involves a sweeping back of the first antennae (AI in Figure 9) and a vigorous thrust of the swimming 
feet (S in Figure 9) to pounce on the prey. This vigorous thrust is probably not just an enthusiastic 
response to a distantly perceived large particle, but probably represents a directed attack toward a target 
that Diaptomus recognizes as animal prey.68 Such a directed attack is necessary for capturing 
microzooplankton, since many microzooplankton detect the copepod's scanning current and have well­
developed escape capabilities.68 

2. Effect of Food Quality 
Food quality is an important controlling variable (Figure 3) that appears at each component of 

predation. Typically, food quality of a particle is regarded as its nutritional content for the predator. For 
example, a nutritious particle would be one that was nontoxic, digestible, and contained a balanced 
composition of proteins, lipids, carbohydrates, and micronutrients to allow growth and reproduction of 
the suspension feeder. Along with nutritional quality, it is necessary to include any factors that would 
diminish the suspension feeder's ability to detect, capture. and ingest a particle. These nonnutritional 
factors would include, for example: size and other qualities as they affect detection or filtering efficiency, 
size and shape as they affect handling and ingestion, and escape abilities of motile prey. For copepods, 
both nutritional and nonnutritional factors are reflected in the selectivity coefficients. 

a. Nutritional Quality 
Thus far, we have argued there is a perceptual bias for the capture of large algae and microplankton. 

Olfaction of the alga was hypothesized by Strickler and colleagues to be the cue used by 
the copepods.50.51.59.60.71 According to this view, expressed in the mathematical model of Andrews,71 the 
calanoid copepod creates a laminar double-shear scanning current, and the phycosphere of algal exudates 
becomes elongated in this field to form an active space that arrives at the copepod's chemosensors on the 
antennae while the alga is in the sensory core in front of, or near, the antennae.71 Olfaction is not the only 
mode of distance perception of nonmotile algae and other particles: the high-speed motion pictures of 
Vanderploeg et al.43 showed that Diaptomus routinely actively captured large inert plastic microspheres 
(>14 j.lm). These results argue that physical cues alone may be sufficient for eliciting active capture of 
large particles, but possibly not smaller particles. The details of how this combination of physical and 
chemical cues is used need to be worked out. 

Indirect support for mechanoreception comes from DeMott and Watson's experiment72 showing the 
clearance rate and selectivities of D. birgei for Chlamydomonas reinhardti (-5 j.lm ESD) and Pediastrum 
(80 x 80 j.lm) were unaffected by the presence of high concentrations of sugars, amino acids, and algal 
extracts which they believed should have obscured the phycosphere ofodor around the algae. In this same 
study, they showed that the Diaptomus clearance rate was unaffected by algal motility, whereas motility 
greatly increases the clearance rate for the cyclopoid copepod Tropocyclops. Cyclopoids, which are 
typically predators and do not create scanning currents, respond to prey movement. These observations 
supporting the role of mechanoreception are consistent with the recent observations of Yen et aL73 
showing that the mechanoreceptors on the first antennae of copepods are sensitive to small displacements 
over a wide frequency range. It will be interesting to learn how the mechanoreceptors perform on 
copepods that create scanning currents and on those that depend on prey movement for detection. 

Thus, biochemical or nutritional quality affects perception of a particle by the cloud of exudates 
around it. Biochemical composition also affects selectivity after capture of the particle because contact 
chemoreceptors near the mouth are used to taste the particle before ingestion.74 Observations of the 
rejection process give clues to how this taste process operates. Large algae or particles like fecal pellets 
are usually ingested or rejected very soon after being brought to the mouth, whereas small algae or plastic 
microspher~s captured passively are ingested or rejected as a group after several have accumulated near 
the mouth.42,43.67.75 Small particles of low nutritional quality can be hidden among a larger mass of high­
quality food and be ingested.42 
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Table 2. W' of eucalanus pileatus for particles of different 
equivalent spherical diameters (ESD) and nutritional quality66 

Active W' 
ESD capture Offered Offered in 

Particle (/lm) (%) alone pairs 

Rhizosolenia alata (live) 59 -100 1.0 1.0 
R. alata (dead, heat killed) 59 0.63 0.83 
Thalassiosira weissfloggi (live) 14 63 0.36 0.30 
Fecal pellets 51 66 0.43 0.44 
Polystyrene spheres 20 7 0 0.02 

The combination of physical and olfactory cues for distance perception and taste before ingestion 
implies that the copepod has a sophisticated two-step process that encourages ingestion of large, high­
quality food. At first glance, this capture of large inert particles would seem maladaptive; however, there 
are few large inert particles (minerals, sediments, or refractory detritus) in open lake or marine environ­
ments.26.27 ,43 These big particles could be fecal material whose scent is disguised by an enclosing 
(periotrophic) membrane (see below) or could be microzooplankton that would escape if Diaptomus 
delayed while obtaining or processing a chemical signaI.43 The sensitivity and possible operation of this 
two-step system can be appreciated from a closer look at Paffenhofer and Van Sant's42 results (Table 2). 
The dead Rhizosolenia alata and fecal pellets, both about the same size as live R. alata. were captured 
at lower rates. The fecal pellets had a selectivity about the same as the small alga, Thalassiosira 
weissflogii. Also, the percentage of captures that were active captures for pellets and T. weissflogii were 
66 and 63, values less than the -100% observed for R. alata. The lower active-capture proportion for fecal 
pellets may be caused by a smaller olfactory cue arising from it or possibly its smaller size, particularly 
length (see below). 

Both lack of active captures and postcapture rejection were responsible for the complete lack of 
ingestion of 20-/lm microspheres offered alone in the experiments of Paffenhofer and Van Sant.42 Very 
few microspheres were captured, and only I of 15 observed captures was apparently an active capture. 
Lack of active captures is not surprising, since a 20-/lm microsphere is small relative to the large size of 
Eucalanus. None of the captured microspheres were ingested. In a mixture of T. weissflogii and 
microspheres, 42% of the captured microsphere were ingested. Thus, inert particles are passively captured 
and ingested incidentally with the algae. This explains the low, but nonzero, W' for beads in Table 2. 

Other studies of the effect of nutritional quality parallel those of Paffenhofer and Van Sant.42 In their 
tabulation of previous work, Paffenhofer and Van Sant noted that W' for dead algae was between 0.52 
and 0.90 relative to that of live algae, with a mean of 0.63; W' for fecal pellets was 0.43 to 0.90 relative 
to living algae. DeMott76 also showed that dead algae were less preferred than live algae; however, in 
addition, he showed that colonization of the dead algae by bacteria improved selectivity. Cowles et al.77 

and Butler et aU8 showed that copepods preferentially select rapidly growing, N-sufficient algae over 
slowly growing, N-deficient algae. 

Selection for algae of different species varies with nutritional quality. The results of DeMott76 with 
Eudiaptomus (a close relative of Diaptomus sicilis) show that algae with gelatinous sheaths, which may 
inhibit digestion, have lower selectivities than high-quality algae (Table 3). As can be seen in Table 3, 
selectivity for toxic blue-green algae is very low. Similar results were reported by Fulton79 and Vanderploeg 
et aI.43 Vanderploeg et aI.43 showed that toxic blue-green algae filaments are readily captured actively, but 
that they are almost always rejected after they are brought to the mouth. Presumably, the toxic substance 
or some associated chemical is the "taste" responsible for rejection. Marine calanoid copepods do not 
appear to be able to taste prior to ingestion toxins associated with toxic dinotlagellates, the major group 
of toxic algae in the oceans, since the rejection mechanism appears to be regurgitation, and the feeding 
rate on both toxic and nontoxic algae in mixtures is reduced drastically.8o 

Possibly both taste and perceptual bias playa role in the lower selectivity of the large (23 /lm) 
gelatinous alga Planktophaeria compared with Chlamydomonas (Table 3). The gelatinous sheath, which 
protects at least some species of green algae from digestion,SI may inhibit ingestion since, once captured, 
the sheath may inhibit the taste from coming through, or possibly the sheath itself may not have a good 
taste. Notice in Table 3 that selectivity for the gelatinous alga decreased at high algal concentration. 
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Table 3. Selectivity (W') of Eudiaptomus for the less 
preferred alga in indicated pairs of algae of different 
food quality (H =high, T =toxic, G =gelatinous sheath) 
offered at high and low food concentrations76 

ESD Food W' 
Food pair (11m) quality Alone Low High 

1.	 Scenedesmus 5 H 0.67 0.79 0.72 
Chlamydomonas 12 H 

2.	 Microcystis 5 T 0.060 0.18 0.15 
Monoraphidium 3.5 H 

3.	 Plankrosphaeria 23 G 0.82 0.54 0.16 
Chlamydomonas 12 H 

Note: W' is given only for the less preferred alga in the pair; by definition, 
W' of preferred alga =1. Concentrations of each alga offered alone or in 
pairs at the low concentration were each 0.125 mm3 I-I. The concentration 
of algae offered in pairs at the high concentration were each 1.0 mm3 1-'. 

DeMott76 described this concentration-variable selectivity as an optimal-foraging strategy. This issue is 
discussed below. 

DeMott82.83 used microspheres flavored by algal exudate, after the technique of Rassoulzadegan et 
al.,84 as a tool to evaluate and classify the selective abilities of different zooplankton taxa by offering them 
mixtures of unflavored microspheres, microspheres flavored with algal exudate (by soaking them for -1 
d in a high concentration of algae), and the algae themselves. If taste is not a factor in food selection, then 
algae and flavored and unflavored microspheres of the same size would have the same selectivities. These 
experiments are relevant, first, because of the potential power of the technique to rapidly classify the 
different species' selective abilities by adding microspheres and algae to bottles of water containing the 
natural assemblage of zooplankton. Second, flavored microspheres may represent an analog of suspended 
or resuspended mineral particles in nature more closely than do unflavored microspheres. These particles 
may pick up algal exudates in the water column or when they reside on the lake bottom or seafloor before 
resuspension. 

Table 4, calculated from results of DeMott,83 shows the following order of selectivity: C. reinhardti 
(ESD =6 11m) P flavored microspheres P unflavored microspheres. In addition, there is a preference for 
small microspheres to large microspheres: flavored 6-11m microspheres were preferred to 12-11m flavored 
microspheres, and unflavored 6-11m microspheres were preferred over unflavored l2-11m microspheres. 
The cinematographic observations of Paffenhofer and Van Sant42 and Vanderploeg et al.43 reveal the 
mechanisms behind these results. Vanderploeg et al.43 showed that unflavored II-11m microspheres are 
captured passively like most of the 6-11m C. reinhardti. Small microspheres are less likely to be rejected 
because they can hide among an accumulated mass of Chlamydomonas and not be detected as low-quality 
food, whereas ~ captured large microsphere or microspheres are more likely to be detected as low-quality 
food. Recently, Bem85 showed that Eudiaptomus did not strongly select 6-11m algae over 6-11m microspheres 
in experiments in which the beads and algae were introduced into the natural seston of an eutrophic lake. 
Perhaps the microspheres were hidden among numerous particles of lake seston that formed the mass of 
particles to be ingested or rejected after tasting. Perhaps the natural seston as a group had a lower food 
quality than the labeled algae, and the copepods were acclimated to a lesser taste-signal strength to induce 
the ingestion response. The message that should'be clear from all the work reviewed here is that whether 
a microsphere or inert particle is ingested depends on its size and what other particles are available. 

b. Size, Shape, and Motility 
As seen in Figure 10, there is a perceptual bias for larger targets. The physical shape of the target may 

affect the copepod's ability to detect an alga. Notice that the W' of Synedra in Figure 10 is larger than 
that of Stephanodiscus, which has a larger ESD. Stephanodiscus is a pill-shaped diatom whose width and 
height are about the same as its ESD (Figure 6), whereas the elongated Synedra. with an ESD of 21 11m, 
has a length of 125 11m. Vanderploeg et al.2 hypothesized that rotation of (randomly oriented) elongated 
algae, as they become aligned in the double-shear scanning current of the copepod, creates a noise that 
the copepod could respond to. Ultimately, as seen in Figure 5, as particle size increases relative to the 
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copepod, it becomes too large for ingestion. Round Table 4. W' relative to Chlamydomonas 
algae may become too large to fit in the mouth, and reinhardti of Eudiaptomus for unflavored 
algal colonies elongated in two dimensions -like the microspheres and microspheres flavored 
stellate colonies of Asterionella (Figure 6) - cannot with exudate of C. reinhardtj73 
be handled for ingestion if their dimensions are greater 

Diameter
than those of the mouthparts used to handle them.2 

Flavoring (Ilm) W'
Copepods can ingest very long algal cells (e.g., Synedra 
delicatissima v. angustissima in Figure 6) and fila­ Flavored 6 0.19 
ments (of the order of millimeters) by orienting the Unflavored 6 0.025 
filament perpendicular to the body axis and the push­ Flavored 12 0.071 
ing it into the mouth.2,49 Unflavored 12 0.0061 

Rotifers use morphological and escape tactics to 
Note: Microspheres were flavored by soaking them in

foil predation by Diaptomus. 41 •68 Synchaeta. the most 
a suspension of 5 x 105 cells per milliliter for -I d.

preferred prey of Diaptomus (Figure 10), is a slowly 
Results are for mixture experiments with a low

moving, soft-bodied rotifer without effective defense 
concentration (1000 cells per milliliter) of algae.

mechanisms. The highly palatable soft-bodied 
Percent standard errors of the mean for all W' data are.

Poly~rthra escapes ingestion by being able to sense 
approximately 25%. 

the current field of Diaptomus and then tumble away 
quickly (280 body lengths per second) using its four 
triplets of paddles. Keratella exhibits no escape response to Diaptomus. but once captured it is manipu­
lated, pressed up against the mandibles, and ultimately rejected. The hard lorica (body surface) and spine 
of Keratella probably foils ingestion. 

3. Concentration-Variable Selectivity and Motivation 
There has been much interest in the question of concentration-variable selectivity because it may 

imply an optimal foraging strategy to maximize consumption of an abundant high-quality or easily 
handled food. Vanderploeg et aI.2,43 demonstrated that W' of Diaptomus for a small (4 Ilm) species of 
Chlamydomonas. which is captured passively, remained constant at about 0.3 relative to a large (12 Ilm) 
species of Chlamydomonas. which can be actively captured, over a broad range of concentrations with 
different ratios of the two species. Both Paffenhofer86 and Vanderploeg et aI.2 showed that selectivity of 
elongated algae, which must go through a complicated handling sequence before ingestion. drops at high 
algal concentrations. The data of DeMott76 for "[ow quality" Planktosphaeria (Table 3), as well as other 
algae, show a similar pattern. 

These drops in selectivity suggest optimal foraging because selectivity for the "less desirable" alga 
drops at high food concentrations; however, Vanderploeg et al,2,43 argue that it does not conform to 
optimal foraging in that selectivity for the less desirable alga drops as its concentration is increased 
relative to the high-quality or easily handled food. Vanderploeg et aI.2,43 argue that this is a satiation­
driven behavior that results from the organism being placed in a food-rich environment for which it was 
not designed. In these high-concentration situations, Diaptomus continues to actively and passively 
capture algae and then reject much of what it has captured. Thus, the broad pattern of lower selectivity 
for the less-desired particle conforms to optimal foraging; however, it occurs while the organism is 
behaving in a nonoptimal way of catching and throwing away captured particles of high nutritional value. 
Vanderploeg et al. 2.43 note that these behaviors can be explained by simple behavioral (ethological) 
mechanisms affected by motivation. We cannot expect organisms to behave optimally in all situations, 
since optimality must operate through sensory and motor pathways that are not infinitely flexible but have 
certain rules of their own. Moreover, selection pressures also constrain the organism to a certain region 
where it can operate in an efficient way. Finding these behavioral rules is more likely to lead to models 
of greater generality and accuracy than optimal foraging narratives that we articulate a priori. Studying 
these mecbanisms may also lead to new, unsuspected optimality principles. No concentration-variable 
selectivity has ever been reported for low algal concentrations; however, this is not to say that this 
phenomenon does not occur in certain species. Such a possibility is suggested by Price and Paffenhofer's87 
observation that Eucalanus initiated second maxillae vibration to enhance the capture of small cells when 
they became abundant. 

Motivation is indicated as an important controlling variable for each component of predation (Figure 
3). Obviously, as discussed above, hunger is an important form of motivation that affects each compo­
nent. Another form of motivation is escape from predation. Zooplankton vertical migration is often a 
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response to avoid predation.ss Food-rich areas may be avoided if predators are present. In addition to this 
obvious response, the swimming behavior of zooplankton may change in the presence of predators. D. 
tyrelli cruises less and suffers a lowered feeding rate in the presence of exudates from the predacious 
calanoid copepod Episehura nevadensis. 89 D. sicilis, which coexists in the hypolimnion with the preda­
cious calanoid copepod Limnoealanus macrurus, swims more quietly (jumps less) in the presence of this 
predator.90 It is not known whether these changes in swimming patterns have any effect on selectivity. 

4. The Generic Calanoid Copepod 
For a long while we have believed in the idea of a single generic calanoid copepod. That is, if we 

understand Diaptomus or Euealanus, we understand all copepods. Strickler,25 based on cinematographic 
observations of two different species of Euealanus, challenged this assumption by putting forth two 
important hypotheses: (1) calanoid copepods produce species-specific and, perhaps, age (stage)-specific 
feeding currents and (2) ambient water motions (turbulence) act as a mechanism for niche separation of 
calanoid copepods. Recent experimentation has generally validated these hypotheses. Cinematographic 
observations have shown that there are significant differences in mouthpart use and feeding currents even 
among those species that have been regarded as omnivores with strong herbivorous tendencies, namely, 
Diaptomus, Euealanus, Paraealanus, and Aeartia (Figure 9). It is worth noting that probably no calanoid 
copepod is strictly herbivorous. D. minutus, one of the smallest if not the smallest freshwater calanoid, 
prefers cilates to small and medium-sized algae.91 Diaptomus, Euealanus, and Paraealanus are alike in 
that they use their mouthparts, including the maxillipeds, to create a double-shear scanning current.91 In 
contrast, Aeartia (Figure 9) has reduced maxillipeds and does not create a scanning current, but instead 
uses seining motions of its second maxillae to capture prey35. In estuaries, where Aeartia Jives, a scanning 
current could be less useful for locating the prey because the turbulence typically found there could 
disrupt the scanning current.35 This seining is effective in the food-rich environment of the estuary but 
not in offshore waters, where food concentration is low.35 Also, Aeartia typically spends much time 
sinking.92 During sinking, Aeartia detects moving prey without signaling its presence. 

Paraealanus and Diaptomus look very similar, use their appendages the same way, and probably have 
very similar selectivity patterns, although it has not been documented that Paraealanus can capture 
microzooplankton. 2.35.67 The lack of well-developed swimming feet (thoracopods) on Euealanus may 
imply that it is not adapted to capture microzooplankton. Very predacious copepods cruise rather than 
scan, and they use mechanoreception to detect motile prey.59.93.95 The different feeding mechanisms can 
be correlated with different feeding rate vs. food concentration curves. For example, Aeartia exhibits 
threshold feeding behavior, Le., the clearance rate drops to low levels at low particle concentrations.35 

This response may be an appropriate energy-conserving mechanism for its feeding method and environ­
ment. 35 Thus, there is more than one generic copepod. The degrees to which chemoreception and 
mechanoreception play important roles need to be worked out for more species. The work to date serves 
as a foundation on which to build. 

Related to the generic copepod problem is that caused by life stage: copepods go through six naupliar 
and five copepodite stages before becoming adults. Most work on feeding and its mechanisms has focused 
on adult females, as I have done in this chapter. Morphology, appendage use, and feeding mechanisms 
vary with the stage of the copepod, as Strickler25 recognized in his first hypothesis. For example, nauplii 
create a feeding current and capture large cells actively. They cannot capture cells passively because they 
do not have the appendages to do this. As a result naupJii, relative to their size, capture large particles, 
even elongated (500 11m) algae like Rhizosolenia.% The ontogeny of appendage use, sensory mechanisms, 
and behavior is an area deserving further study, especially in view of the abundance and grazing impact 
of the juvenile stages.96 

5. Turbulence and Components of Nutrition 
Turbulence is listed as a controlling variable for two components of nutrition: encounter/search and 

metabolism. Modeling studies97·99 and experimental work with Centropages hamatus and Aeartia have 
shown that the encounter rate with prey is increased under turbulent conditions. 10.12.24 The feeding rates 
ofAeartia on algae increased at "moderate" levels of turbulence, and decreased at high levels, presumably 
because of disruption of feeding currents,13 as hypothesized by Strickler. 25 The rate of egg cannabalism 
of Aeartia in a study by Saiz et al. 13 was depressed more than the feeding rate of algae under turbulent 
conditions. Saiz et al. 13 argued that this may have been a result of distance mechanoreception of the eggs 
being disrupted by the turbulence. This, then, may be taken as evidence for turbulence affecting 
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selectivity. No study to date has examined a copepod like Diaptomus67 or Temora92 that spends most of 
its time creating a scanning current. Nutrient excretion in Acartia was also increased under turbulent 
conditions,I(Xl probably in response to increased metabolic rate associated with more frequent escape 

24responses.

III. CILIATES AND ROTIFERS: DIVERSE GENERALISTS
 
AND SPECIALISTS
 

A. INTERESTING ANALOGIES 
Although ciliates - found in both marine and fresh waters - are protozoans, and rotifers - found 

primarily in fresh water - are metazoans, I discuss these taxa together because many of them have 
analogous feeding strategies, and we could put some species from each taxon in the same feeding guilds. 
Both taxa are small, ciliates typically 20 to 100 ~m long and rotifers typically 100 to 500 ~m. Both taxa 
include species exhibiting polyphagy and extreme stenophagy. Not only may they feed on the same food, 
they also (as recent work shows) are favored prey of freshwater and marine calanoid copepods. lO l,I02 

B. CILIATES 
1. Filter-Feeding Ciliates 

Fenchel 103 reviewed the possible mechanisms of suspension feeding - inertial forces, diffusion, 
gravity, direct interception (=raptorial feeding in the sense, he thought, that ciliates bumped into food), 
and sieving - by ci liates and concluded that sieving and raptorial feeding were the major mechanisms. 104 

He gave a detailed account of the hydrodynamics of the filter feeding of different groups of ciliates. The 
size of particles collected by the ciliary filter is closely correlated with the spacing between ci lia, and the 
ciliate has little capacity to select particles of different nutritional quality. Many filter-feeding ciliates are 
adapted for feeding on bacteria and other picoplankton «2 ~m). The broad principles of his analyses of 
feeding mechanisms will probably remain intact, although recent work has questioned certain details. 
Sanders lll5 showed that surface effects (charge) can affect the accumulation of large bacteria-sized 
(O.9-~m) particles, but not small (0.6-~m) particles. Monger and Landry 106 have argued that the geometric 
model of Fenche[lo3 must be modified to include surface interactive forces at least when used to describe 
the feeding of very small protozoans. 

Fenchel 103 showed that ciliates having greater distances between cilia generally have higher clearance 
rates, and that bactivorous ciliates, which must have very small spacing between cilia to capture bacteria, 
are usually found only in eutrophic environments where food concentrations are high enough to compen­
sate for their lower clearance rates. Water transport to the ciliate is assumed to be independent of particle 
concentration, and the maximum feeding rate is limited by the food vacuole formation rate. IlH.107 The 
ingestion rate follows Michaelis-Menton kinetics. 107 Since food vacuole formation is less efficient for 
large particles, the maximum feeding rate is affected by the proportion of large particles in the mixture. 

2. Raptorial Ciliates 
The raptorial ciliates feed on algae and other microzooplankton and are often specialists on particular 

organisms. 108-1 II The raptorial ciliates prefer large particles. Tintinnids ingest particles that are up to 45% 
of their body diameter, and oligotrichs commonly ingest algae almost as large and even larger than 
themselves.112-116 I am concerned with the phytophagous taxa because they are important grazers in waters 
of varying trophy in both marine and fresh water. 108.117.118 For example, in both the eutrophic and 
oligotrophic Great Lakes, ciliate biomass rivals crustacean biomass. 117.118 Given their high respiratory 
demands, the ciliate grazing impact should be greater than that of crustacean zooplankton. 

The phytophagous ciliates can be highly selective. Favella ehrenbergii requires dinoflagellates for 
growth, and only small amounts of other algae in the proper size range are consumed. 108 Chemical cues 
were suggested as the mechanism for selection because dinoflagellates, regardless of type of body wall, 
were ingested. Freshwater Coleps can survive only on flagellates. 109 Nassula is specialized to feed on 
tilamentous blue-green algae and will not feed on green algae, diatoms, or nonfilamentous blue-green 
algae. 110 Nassula uses its specialized cytopharyngeal basket to grasp. fold in half, and coil the tilament 
into its body.119 

It is possible that ciliates must ingest particular algae because of certain specific biochemical require­
ments, digestibilities, and factors associated with handling. It is also possible that certain algae, like the 
dinoflagellates in the Favella example, have exudates that act as very specific chemical signals to the 
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Figure 11. Selectivity (W') of the ciliate 
Favella sp. for different particles in the 
experiments of Stoecker.' 16 This set of W' 
values was deduced from her sets of 
paired experiments. 

ciliate. This latter possibility is strongly suggested by Taniguchi and Takeda, 120 who observed with high­
speed videography that the capture response to a favored food was initiated before the food made contact 
with the oral membrane of the ciliate. Likewise, unfavorable foods were rejected before or at contact with 
the oral membrane. Un favored cells, which were accidentally captured, were rejected from the peristomal 
cavity. 

The selection process in ciliates is far from understood. A curious example is the selective feeding of 
FaveLLa sp. in paired mixtures of live algae, dead algae, and microspheres of various kinds. llll The results 
of these paired experiments were combined to give the overall W' result in Figure II. Certain microspheres 
were preferred even over live algae. Live algae were preferred to dead algae and other types of 
microspheres. Surface properties, either chemical or physical (charge. for example), must be responsible 
for this result. 

The only experiment to see if the selectivity of a ciliate changes with the relative concentration of food 
was done with Salanion sp. feeding on a mixture of the dinotlagellate Heterocapsa and the green alga 
DunalieLLa. 121 The results of this experiment are redrawn and analyzed in Figure 12, because their form 
of presentation gave the impression of variable selectivity. Data were presented as the proportion (r) of 
Heterocapsa in the diet as a function of the proportion (p) available. If selection for each algal species 
were the same, then the data points would fall on the straight line labeled WH' =WI)' = I. The r values 
fell to the upper left, indicating a strong preference for Heterocapsa. The variable r values do not imply 
variable selectivity, because the curved line predicted by a constant W' value of 0.05 for DunalieLLa fit 
the r vs. p data very well. 

C. ROTIFERS: GENERALISTS AND SPECIALISTS 
The feeding habits of rotifers are related to the morphology of the ciliary corona, which produces the 

feeding current, and the mastax, which grasps and in some cases grinds the food before swallowing. 122 

Little is known about the hydrodynamics of swimming and feeding or the function of the feeding organs, 
because high-speed cinematography or videography, which is necessary for observation, has not often 
been applied. m Gilbert and Bogdan l24 classified rotifers as generalists or specialists depending on the 
functional morphology of the coronae. The selectivities of generalist and specialist rotifers shown in 
Figure 13 were calculated from raw data on filtering rates in their experiments. The presentation of results 
is very similar to theirs, except that W' is used instead of the selectivity index D. The generalists ­
KerateLLa, Conochilus. and Kellicottia - have a bell-shaped W' vs. ESD curve, showing preference for 
intermediate-sized particles. Polyarthra, a specialist, showed preference for tlagellated algae, especially 
Cryptomonas. The specialist Synchaeta strongly specialized on Cryptomonas and preferred C. erosa, the 
larger of two species on which it was cultured. All the generalists have extensive, finely ciliated buccal 
fields in which a wide variety of particles may be transported to the mouth. The coronae of the specialist 
rotifers are more sparsely ciliated. They seem designed for capture of individual particles. Presumably 
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these specialists, like the raptorial ciliates, detect their prey before or at contact by physical or chemical 
means. 

Oth~r rotifers exhibit stenophagy.122 One of the more interesting examples is Notholca squamula. 
whose abundance is closely correlated with that of the diatom Asterionellajormosa.'2s This 120-~m-Iong 

rotifer feeds by biting the ends off the cells (-75 IJ.m long) in the stellate colonies (diameter = 150 IJ.m, 
Figure 6) with a strong crushing action of its welJ-developed trophi. Remember, the stellate colonies of 
Asterionella offered protection against grazing by Diaptomus. Algae other than Asterionella were 
rejected by Notholca. This selection and the close coupling of Notholca abundance to that of its prey, 
which is reminiscent of the ciliate/dinoflagellate coupling, suggest that Notholca is keying in on very 
specific chemical information to make its choice of prey. 
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Figure 13. W' vs. equivalent spherical diameter curves for generalist rotifers Keratella. Conochilus, 
and Kellicottia (upper left) and specialist rotifers Polyarthra (upper right) and Synchaeta pectinata 
(lower left) from study of Gilbert and Bogdan. 124 The species of algae or bacteria used in the 
experiments are indicated by their abbreviations: Aero (Aerobacter), Chlamy (Chlamydomonas), F 
(Chlamydomonas without flagellum). Crypto (Crypotomonas), Eug. (Euglena), Rhodo (Rhodomonas), 
and Cr. (Cryptomonas with indicated species names). 
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In experiments with algal exudate-tlavored and unflavored microspheres, Branchionus fed 
nonselectively, Filinia fed preferentially on 6-llm flavored spheres, and Polyarthra, Synchaeta, Notholca, 
and Keratella ingested few flavored or unflavored spheres.82 The lack of feeding on spheres by the 
specialists (Polyarthra, Synchaeta, and Notholca) is not surprising, but the results for Keratella, a 
generalist, are surprising. In a later study, however, Rothhaupt '26 showed that the generalist B. angularis 
did not ingest 12-llm microspheres, but ingested algae of the same size, although at a lower rate than 
smaller algae. Perhaps Branchionus recognized the lack of taste of the large microsphere. Or possibly it 
could swallow a large elastic alga but not a large hard microsphere. Further work on feeding mechanisms 
is required to explain these differences. 

In addition to ingesting a wide variety of particles, Branchionus has a selectivity for the toxic blue­
green alga Anabaenajlos-aquae equal to that of high-quality algae (Chlamydomonas), and can utilize this 
toxic alga as a sole or supplementary food source.79.127 Rothhaupt128 showed that selectivity in Branchionus 
was largely size dependent, and ingestion was well predicted by the EFC model. 

IV. TUNICATES AND CLADOCERANS:
 
METAZOAN FILTER FEEDERS
 

A. MORPHOLOGICAL DIFFERENCES AND FUNCTIONAL SIMILARITIES 
Although pelagic tunicates (phylum Chordata), which are restricted to marine systems, and Cladocera 

(phylum Arthropoda, class Crustacea), which are largely restricted to fresh water, are very different in 
both taxonomic and morphological terms, most function as opportunistic filter feeders that can compete 
successfully with calanoid copepods. They typically filter, by sieving and other physical mechanisms (see 
below), a broad range of particle sizes, including picoplankton «2 Ilm), and accept or reject a collected 
mass of particles as a unit. This implies that there is little capacity to select particles on the basis of 
nutritional quality. Typically, selection is a concentration-invariant function of particle size or in some 
cases particle size and surface properties (charge). 129·131 Many members of both groups have high weight­
specific clearance rates and/or high Gm•x values, and - unlike the copepods, which must reproduce 
sexually - they have reproductive strategies that can rapidly tum ingested food into new individuals to 
exploit temporarily high food concentrations. 132.133 

B. PELAGIC TUNICATES 
1. Salps and Doliolids 

Salps and doliolids feed by straining particulate material through a continuously produced conical 
mucous net that fills much of the pharyngeal cavity.I32.l34.137 This plankton net is wound up and 
continuously ingested. Salps, which use circumferential muscle bands for locomotion and for forcing 
water through the net, have higher filtering rates and can be larger than the doliolids, which use ciliary 
action to drive water through the nets. 132 Because of the evanescent and fragile nature of these nets, the 
pore-size distribution of the net is not known; however, the filtering efficiency (W') vs. particle-size 
curves have been determined for salps from feeding experiments using natural seston counted and sized 
with a Coulter counter. m As can be seen from Figure 14, which shows results from the largest and 
smallest species studied by Harbison and McAlister, 135 some salps are quite efficient at removing small 
particles even down to 1 Ilm. Observed differences in the W' curves among and within species are related 
to animal size: smaller salps retain smaller particles. Cinematographic observations on the feeding 
mechanism of the neritic doliolid Doliolum nationalis suggest that its filter is quite coarse, having a 
particle retention efficiency on the order of 50% for 4-llm particles 137 (contrast with values for benthic 
suspension feeders in Chapter 8). 

The oceanic salp Pegea confoederata is able to survive on extremely low concentrations of food found 
in oceanic central water masses. When it is exposed to the higher particle concentrations typically found 
in neritic areas, feeding is disrupted because the mucous net becomes overloaded with food and breaks. 136 
This breakage is thought to be a factor excluding these animals from neritic areas. This is a clear-cut 
example showing that the optimal-foraging narrative does not apply to all ranges of particle concentration 
presented by the investigator or some environments, Le., there are "design" constraints that limit optimal 
behavior to certain environments. 

Deibel and Paffenhofer,l37 using high-speed microcinematography, were able to describe the special 
mechanisms necessary to handle large particles and certain aspects of the tluid dynamics of particle 
capture. This appears to be a fruitful area of research, especially since the tluid mechanics of filters like 
these have already been worked out by Silvester. 138 
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2. Appendicularia 
The mechanisms of filtration in pelagic appendicularians have recently been reevaluated by DeibeIL\9-1~2 in 

his studies of Oikopleura vanhoeffeni, a neritic cold-water species. Appendicularians feed within a 
complex set of mucopolysaccharide filters known as the house. The animal drives water through coarse 
incurrent mesh by beats of its tail, and suspended food is concentrated in a food-concentrating filter of 
very fine pore width (-0.2 l-lm). The concentrated food suspension is then forced through the pharyngeal 
filter, and the pharyngeal filter removes particles from suspension by sieving and adhesion. Until recently, 
it was believed that the pore size of the food-concentrating tilter, formerly called the food collection tilter, 
determined the particle retention efficiency. The pore-size distribution of the pharyngeal tilter is much 
coarser, suggesting that 50% efficiency is obtained only for particles 3 l-lm in size. There have been no 
measurements of particle-size selection to test whether actual tiltering efficiency matches that predicted 
by the pore-size distribution. Oikopleura, by adjusting its mouth opening, can reject part or all of the 
concentrated food suspensIon. Oikopleura can lower its clearance rate in high concentrations of food by 
intermittent pumping, thereby preventing the capture of excess food. 

C. CLADOCERA 
1. Single-Mode and Dual-Mode Feeders 

When discussing the filter-feeding Cladocera (as opposed to the predacious Cladocera), it is necessary 
to distinguish between two feeding groups. The first group, the single-mode feeders (e.g., Daphniidae), 
collect a broad size range of particles with relatively homogeneous filter combs. The particles are sieved 
by the filter combs of the third and fourth trunk limbs, and setae on other appendages or structures scrape 
off the collected particles and move them toward the mouth. 143 The second group utilizes dual feeding 
modes: a raptorial mode and a filter-feeding mode.I44.145 These groups have different size-selectivity 
patterns and responses to other aspects of food quality; therefore, special emphasis is placed on contrast­
ing the selectivity patterns of these two groups and relating them to their feeding mechanisms. Cladocer­
ans are the most-studied members of the freshwater zooplankton, and we know more about their feeding 
biology than other freshwater zooplankton and, probably, most marine zooplankton. The tilter-feeding 
approach of this successful group stands in marked contrast to the selective feeding of the copepods. The 
reasons for the dominance of one group over another in different aquatic systems have been of great 
interest to Iimnologists and probably relates, in part, to the success of these different feeding strategies 
in different systems. m 

2. Food Quality 
a. Small-Particle Capture Efficiency 

For the single-mode feeders, selectivity for particles of different sizes is at least approximately related 
to the intersetule distances on the filter combs.1411.149 Anything greater than the intersetule distances is 
retained as long as it is not larger than the filtration apparatus can handle.'~3.15() Figure 15, redrawn from 
DeMott,I~M shows that W' of the 1- to 2-l-lm-long bacterium Aerobacter (relative to the 6-l-lm-diameter 
Chlamydomonas) is related to the mesh size of the filter combs of all the single-mode feeders, but not 
to the dual-mode feeders Bosmina and Chydorus. 
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Gerritsen and Porter l29 showed that the charge and wetability of particles close to the mesh size can 
affect the efficiency of particle retention. This observation on surface properties has relevance to the 
ability of the filter to retain very small particles of different types, because electrophoretic mobility ­
a measure of particle (and particle-filter) repulsion - varies among algae, cyanobacteria. and bacteria; 
moreover, electrophoretic mobility changes with the pH of the water and dissolved organic carbon 
concentration. 1:10 

Why do different single-mode filter feeders have different mesh sizes? In addition to the correlation 
between mesh size and the size of the particle captured, there is evidence that coarse-meshed tilter­
feeding c1adocerans have higher weight-speci tic clearance rates.147.I~H Brendelbergerl~7 notes that this is 
analogous to Fenchel'sl07 observations that coarse-meshed, filter-feeding ciliates have higher weight­
specitic clearance rates than those having fine meshes. Perhaps there is a penalty to pay for possession 
of fine meshes in the form of an increased pressure drop across the "tilter" system. Perhaps signiticantly 
more energy is required to push water through a system with fine meshes. 

The dual-mode feeders Rosmina and Chydorus have their tirst two pairs of appendages modi tied for 
grasping individual large particles. As particle size increases, W continues to increase in Rosmina. For 
example, the clearance rate on Cosmarium (26 x 16 x II ~m) is six times higher than that for Chiorella 
(5 ~m).151 DeMott and Kerfoot 145 speculated that the continuous horizontal swimming of Rosmina may 
be coupled to a remote detection system for the capture of large particles. 

b. Nutritional Quality of Particles 
Like filter feeders in general, the single-mode feeders have limited capacity to reject individual 

particles. In the single-mode feeders, filtered particles travel up to the food groove to form a bolus under 
the labrum that is worked over and tasted prior to ingestionyl.152 Rejection is accomplished by the first 
two limbs, which are not used for tiltering. Gerritsen et al.l:1l noted that some individual large particles 
could be ingested or rejected from boluses containing many particles. Excess food and colonies or 
filaments that clog the filtering apparatus are rejected by the abdominal c1aw.H1.I51 Excess cells not packed 
in a bolus can also be tlushed out of the carapace by "outwashing".'5~ Carapace gape may be decreased 
somewhat to prevent the entry of tilaments into the filter chamber. 155 

The selectivity patterns of the single-mode feeders are consistent with the limited capacity of these 
rejection mechanisms to regulate the nutritional quality of ingested food. The selectivities for 6-~m 

tlavored and untlavored microspheres were identical. H2 However, later, more detailed studies show some 
ability of single-mode feeders to select algae or tlavored microspheres over untlavored microspheres. 
Kerfoot and Kirk 15(, showed that small single-mode feeders had somewhat higher preferences for tlavored 
as opposed to untlavored microspheres and for small (6-~m) as opposed to large (12-~m) microspheres. 
Large c1adocerans did not show this discrimination. Kerfoot and Kirk l5(, thought this was a result of the 
smaller cladocerans processing the microspheres one at a time and their inefficient handling of larger 
microsph.~res. BemX5 showed that small single-mode feeders fed on algae and microspheres at the same 
rate for particles of 2,6, and II ~m, but that 19-~m algae were preferred over 19-~m microspheres. 
Single-mode feeders were only partially successful in selecting against the filamentous toxic blue-green 
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alga Anabaena fios-aquae when paired with 6-llm Chlamydomonas reinhardti. 79 Pairing Anabaena with 
Chlamydomonas lowered the feeding rate on Chlamydomonas, through either toxic effects or inefficient 
rejection mechanisms that rejected Chlamydomonas as well. In contrast, when the filamentous diatom 
Melosira was paired with C. reinhardti. Melosira was preferred. Fulton and PaerJl57 showed that in 
mixtures of unicellular toxic Microcystis (4 11m) and C. reinhardti. there was no evidence of discrimi­
nation against Microcystis. Prior exposure to Microcystis did not alter selectivity, but, through its toxic 
effects, did lower filtering rates. 

The dual-mode Bosmina can use chemosensory abilities to select particles but does not avoid ingesting 
toxic blue-green algae. DeMott82 showed that the Wi of unflavored 6-llm spheres was 0.6 relative to C. 
reinhardti of the same size. In a comparison of microspheres and algae of the same size, Bosmina strongly 
selected against 11- and 19-1lm microspheres. 85 Fulton79 observed W' values of 0.75 for C. reinhardti 
relative to toxic unicellular Microcystis and 0.59 relative to toxic Anabaena. Bosmina is resistant to the 
toxins of these algae, although it does not reproduce if either of these algae is the sole food source. 158 

c. Size, Shape, and Motility 
Once a particle is captured by a filter-feeding cladoceran, it must be handled before ingestion. Many 

of the problems described above for copepods handling large particles of varying shapes apply here. 
Diaphanosoma brachyurum. 79 which is a high-efficiency bacteria feeder, is incapable of ingesting 
filamentous algae. Daphnia readily ingests the filamentous diatom Melosira italica. but not M. italica 
tenuissima because the cells of the latter cannot be separated easily by Daphnia for ingestion. 159 The 
colonial diatoms Asterionella and Fragilaria also offer difficulty for some Daphnia Spp.159 The dual­
mode feeder Bosmina has very much higher selectivities for filamentous algae than for C. reinhardti. 79 

Its first two appendages, modified for grasping large particles, undoubtedly are important in this high 
selectivity. 

Motile microzooplankton prey like Polyarthra. which have vigorous escape responses elicited by 
cladoceran flow fields, will escape capture. 160 

3. Concentration-Variable Selectivity 
As might be expected from the largely passive and mechanical selection of the single-mode feeders, 

selectivity for large and small particles of varying nutritional qualities does not change much with particle 
abundance.76.83.161 However, Hartmann and Kunkel,152 in a model emphasizing the multistep feeding 
process of Daph'ia. argued that filamentous algae will be selected against at most steps, compared to 
spherical algae, :cause of problems of handling. Moreover, they hypothesized that this "behaviorally 
controlled" hanu.mg would lead to variable selection for mixtures of spherical and elongated algae. No 
reliable data are available to carefully evaluate their hypothesis. 

It is a different story for the dual-mode feeder Bosmina feeding on mixtures of 6-llm Chlamydomonas 
and 1- to 2-llm Aerobacter. 161 When Chlamydomonas:Aerobacter concentrations were 2.5:0.25 and 
0.25:2.5 Ilg ml- ' dry weight, the respective W' values of Aerobacter were 0.36 and 0.073. The higher 
selectivity for Aerobacter at the higher Chlamydomonas concentration was a result of the clearance rate 
for Aerobacter remaining the same but that of Chlamydomonas dropping. This is a satiation-driven 
response for the raptorial feeding mode, which we could probably term an active feeding mode, since, 
like the copepods, response to remotely detected particles is probable. It would be of interest to know what 
aspect of the behavioral chain leading to ingestion is affected. Is it searching behavior, or some aspect 
of handling? 

V. DISCUSSION: SOME INTERESTING NARRATIVES 

A. OLD NARRATIVES 
1. Zooplankton Are Not Peak Trackers 

I have shown that copepods, cladocerans, and ciliates do not focus their efforts on the most available 
prey. When concentration-variable selectivity occurred, it was satiation driven and a drop in selectivity 
for a difficult to handle or less desirable food was observed. In the case of the less desirable food, there 
may not be enough of a stimulus to trigger the ingestion response when the animal is satiated. Ecologists 
often argue that as the animal gets hungrier, it includes more prey items in its diet and becomes less 
selective.2 This assumes the implicit frame of reference of the well-fed anima1.43 The more appropriate 
frame of reference may be the hungry animal. More focus should be put on studying the animal's feeding 
behavior at very low food concentrations. As I have argued above, an appropriate perspective is to 
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recognize that selection is a multistep process that can be affected by motivation at each step (Figure 3). 
This mechanistic perspective, I believe, provides the framework for making observations useful for the 
development of predictive models. After we understand the mechanisms, we can ask if they have adaptive 
value relative to our narratives concerning optimal foraging. 

2.	 Dynamics of Ecosystems Cannot be Described by the Size 
of Their Components 

Size is an important variable in terms of its effect on the rates of various physiological processes, 
including metabolic rate and feeding rate. Also, if closely related species are of different sizes but have 
the same food collection systems (as, e.g., the Diaptomus spp. in Figure 5), allometry of the food 
detection. collection, and ingestion organs will lead to size-related patterns in selectivity. The W-ESD 
spectrum of D. ashlandi is shifted to the left of the other two species because it is a much smaller species. 

However, when we start comparing organisms that are not closely related, generalizations about 
feeding based on size become tenuous, especially when the species belong to different feeding guilds. In 
the latter case, different responses to other aspects of food quality such as motility, toxicity, shape, and 
biochemical composition will confound predictions based on size. Copepods and cladocerans, which 
overlap in size, do not function in the same way in ecosystems. Likewise, generalist rotifers and ciliates 
do not function the same way that specialist rotifers and ciliates do. 

If we are going to truly understand aquatic ecosystems, we have to study the feeding mechanisms of 
their major components and not rely on the easy verities of size arguments. If we were studying the 
feeding behavior of lions on the plains of Africa, we would follow them around, watching their behavior 
through binoculars or recording results on video or film.. We must do the same with the zooplankton: we 
must enter their world and follow them around. Recent advances in cinematography and videography 
make at least some aspects of this direct observation possible.162 

3.	 Certain Metazoan Filter Feeders Can Ingest Picoplankton 
Certain pelagic tunicates and cladocerans can ingest picoplankton, including bacteria. Probably more 

work is necessary to identify pelagic tunicates that have this ability. Clearly, only some of the Cladocera 
can do this. An interesting question is: Why are not more metazoan filter feeders capable of ingesting 
bacteria? Are there filter-design or energetic constraints that prevent their efficiently filtering bacteria? 
I touch briefly on the subject below when I discuss temperature and water viscosity. 

B.	 A GREAT LAKES NARRATIVE: THE IMPORTANCE OF PHYSICS 
Armed with our new information on feeding mechanisms, it is possible to tell a number of new stories 

about the plankton in the Great Lakes. I choose to focus on two stories, the stories about viscosity and 
turbulence, because these physical variables may play an important but generally unappreciated role in 
the evolution of aquatic communities.25.60 In Figure 2, we have seen that as we move from oligotrophic 
to the eutrophic Great Lakes, dominance of the grazing community by calanoid copepods shifts to 
Cladocera. This shift in the annual average community structure is caused by the explosive parthenogenetic 
reproduction of cladocerans during the warmer months in the eutrophic lakes. This result is consistent 
with Muck and Lampert'sl33 observations that Diaptomus has a higher filtering rate than Daphnia at low 
food concentrations, but that Daphnia has a higher maximum ingestion rate, G ' The higher G ismax max 

turned into high production of parthenogenic offspring in the higher particle concentrations found in 
eutrophic lakes. 

Of course, this response depends on the size and kind of food available. Geller and Mullerl63 developed 
a scheme to explain the seasonal succession of zooplankton on the basis of food size. They subdivided 
cladocerans into three groups on the basis of filter mesh size: (I) "high-efficiency bacteria feeders (0.24­
to O.64-llm mesh size)", (2) "low-efficiency bacteria feeders (1.0-I.6Ilm)", and (3) "macrofiltrators (>2.0 
Ilm)". Copepods were thrown into the macrofiltrator category because there are few c1adoceran 
macrofiltrators. In oligotrophic lakes, macrofiltrators in the form of copepods dominate throughout the 
year. In mesotrophic and eutrophic lakes, copepods dominate throughout winter. In mesotrophic lakes, 
medium-mesh cladocerans dominate during spring through autumn. In eutrophic lakes, medium-mesh 
species dominate during spring and autumn, while fine-mesh species dominated during summer. Geller 
and Mullerl63 argued that this succession was driven by the increasing importance of bacterial food, 
especially in the eutrophic lakes. 

It seems to me that an important additional force behind Geller and Muller's'63 successional pattern 
could be the impact of temperature-driven changes in viscosity on the food collection system of the 
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copepods and c1adocerans. In going from 25° to 1°C, viscosity increases by a factor of twc. The pressure 
drop across a filter is proportional to the viscosity, 11. 115 Also, the boundary layer thickness around filter 
elements is proportional to 111f2 and inversely proportional to U'h, where U is the flow rate through the 
filter. l64 J0rgensen et al.'65 showed that the ciliary pump of bivalves was a constant-force pump whose 
pumping rate dropped in accordance with this viscosity relationship. What is the nature of the pump in 
c1adocerans? Also, increased boundary layer thickness at low temperatures might have a detrimental 
effect on filter function. Thus, in summer, when viscosity is less likely to be a problem, the fine-meshed 
c1adocerans can dominate. Diaptomus spp. generally reproduce during winter and spring. The scanning 
system of copepods may be especially efficient at low temperatures. I am not aware of any experiments 
on c1adoceran feeding at low temperatures that could be used to test these ideas. Moreover, cold water 
plus oligotrophic conditions may represent particularly difficult conditions for c1adocerans to overcome. 
Algal concentrations are often low in winter. Many cladocerans escape winter by producing resting eggs. 
Perhaps this is their way of escaping the rigors of high viscosity and low food concentrations. The low 
temperatures of Lake Superior may present a year-round barrier to c1adoceran domination: the average 
surface temperature in July is 7°C. I wonder if the seasonal and latitudinal distribution of metazoan filter 
feeders, in general, may be caused by temperature-related viscosity constraints operating on their 
filtration systems. 

The other important physical question is, what is the importance of turbulence to zooplankton? Are 
zooplankton of large lakes adapted for turbulence, whereas zooplankton of small lakes and ponds are not? 
Often, young stages of copepods are found in surface waters, whereas adults are not. Does this mean these 
young stages are turbulence adapted, whereas adults are not? 
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